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ABSTRACT. A metapopulation model for alien species
invasion of a lake network is coupled with an economic model
of prevention. The model restates a stochastic problem in
deterministic terms. It provides a macroscopic description of
the lake network with prevention methods controlling both the
outflow of invaders at infected lakes and the inflow of invaders
at uninfected lakes. Results indicate that optimal control
implements no more than one of these methods at any moment
in time. Typical optimal control measures change over time
as the lake ecosystem becomes successively more invaded.
Early control of outflow from infected lakes is replaced by
later control of inflow to remaining uninfected lakes. Closed-
loop control trajectories are analytically characterized in the
phase-plane for a limiting case, while in general a simple
and stable numerical algorithm is developed for solving the
optimal control problem.
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1. Introduction. Successful invaders can change the balance of
natural ecosystems, lead to the extinction of native species, and cause
damage to natural resources and economic activity. This problem of
nonindigenous species is not purely biological; its description requires
both biological and economic factors, and their feedbacks (Crocker and
Tschirhart [1992], Settle et al. [2001]). In lake ecosystems the economic
changes induced by invaders are diverse and include pipeline fouling,
fishery degradation, water quality impacts, and loss of recreation po-
tential, e.g., (O’Neill [1997]).

When an invader is introduced into a lake or a river, its establishment
depends on the state of the existing ecosystem. If it has successfully es-
tablished and starts to grow considerably, it may change the ecosystem
itself, which creates both short- and long-term biological and economic
consequences. After the species has established, it may start to spread
to other lakes, via human-related and natural dispersal mechanisms.

While it may be impractical to consider all of the factors mentioned
in a single model such a model would be very complex, a number
of different models can be used, each one capturing components of
the complex phenomenon. Each model can focus on a particular
scale: macroscopic (description of average characteristics of a large
region (Shigesada and Kawasaki [1997], Clark [1990])), middle-scale
(e.g. transport of invaders between lakes (Buchan and Padilla [1999]))
or small-scale (processes in a single lake or a part of it, analysis of
a single population, etc., (Turchin [2003])). Lower-level models may
be necessary to estimate parameters of the larger-scale models and, in
turn, the latter can be used to estimate basic trends, which are to be
needed on smaller scales.

In this paper the optimal management of a lake system subject to
nonindigenous species invasion is analyzed at the macroscopic level.
We simplify a complex stochastic process into a model that takes into
account important effects on average, or proportionally. This allows
the restatement of a stochastic problem in deterministic terms. The
method permits the incorporation of intersecting biology and economics
at a large scale, and investigates their joint influence on decision-making
and optimal invasion management.
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The analysis provides several contributions. First we demonstrate,
both analytically and numerically, how optimal prevention policy de-
pends upon several key factors, including the mean economic damage
per lake, the efficiency of prevention, the planning horizon, initial mag-
nitude of the invasion and the discount rate. Given our choice of func-
tional form, we find that at each moment it is optimal to implement at
most only one type of prevention: control only at infected lakes, only
at uninfected lakes or at neither. There may be a moment of control
switching, which depends on the efficiency and per unit cost of each
control.

Second, we perform a comprehensive phase-plane analysis of the
dynamical system. We are able to analytically characterize control
trajectories in the phase-plane and closed-loop optimal control polices
for a limiting case where the discount rate is zero. For the general case,
we present a simple and stable numerical algorithm for the control
problem. Unlike usual methods in optimal control, where the equation
governing the stock dynamics has to be integrated forward, and that
for the shadow price backward, on the phase plane there is only a
single equation, simplifying the integration considerably. While we are
not able to analytically characterize the complete general case, we find
several comparison propositions that provide considerable insight into
the dynamics of the system.

There is a large literature on the successful application of macroscopic
models of fishery management as laid out in Clark [1990]. In spite
of the simplicity of such macroscopic models, they provide many
explanations and insights into the organization of fisheries. Similar
attempts have been made in resource extraction, agriculture, national
parks management and similar fields (van Kooten and Bulte [2000]).
Olsen and Roy [2002] use a spaceless, stochastic dynamic optimization
model to characterize situations where the eradication of an invasive
species is optimal and not optimal, given natural growth and spread
are subject to exogenous environmental risk. Their results highlight the
importance of the speed of growth/spread of the invasion, dependent
in turn on the exogenous risk. Herein the speed of the spread is
not taken as exogenous, rather it is endogenous to the policy maker.
Brown, Lych and Zilberman [2002] abstract from all dynamic issues and
employ a spatial, static approach to investigate transmission and source
control of insect-transmitted plant diseases. Allowing for removal of
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diseased source plants and/or barriers restricting insect transmission
of the disease, the results demonstrate that while (complete) source
control and transmission barriers improve welfare over only barriers,
when non-market values over source areas are included the less effective
transmission barriers solely may be optimal.

This paper extends the literature by viewing noninvaded space as a
nonrenewable resource, and investigates its optimal management. This
allows us to find analogies between our approach and other models,
e.g., optimal control of epidemics or optimal use of an antibiotic
(Laxminarayan [2001]). Nonetheless, the models are different, as are
the main conclusions. The most important difference arises from the
highly nonlinear structure of the control terms in the state dynamics.

The paper is organized as follows. In Section 2 the main assumptions
underlying a macroscopic model of optimal invasion prevention are de-
scribed. In Section 3 the model is developed, followed by a preliminary
analysis, which enables the characterization of a number of important
conclusions. Section 4 presents a phase-plane analysis. Numerical sim-
ulations are employed to illustrate several propositions in Section 5,
followed by a brief conclusion.

2. Macroscopic model of invasion and prevention.

2.1 Biological background. Suppose there is an alien species intro-
duced into one or several lakes. It has established and starts to spread
to other lakes in a region. A primary vector of human influenced spread
is the transportation of boating and fishing equipment from lake to lake,
see e.g., Johnson et al. [2001] for an analysis of zebra mussel dispersal.
Consider a resource manager who allocates scarce resources to maxi-
mize social welfare subject to the damages of invasion, costs of prevent-
ing further spread and the spread of the invader. The primary means of
preventing further spread is a disinfecting process at some point in the
transportation mechanism, for example washing equipment on its way
from one lake to another (Buchan and Padilla [1999]). In this setting,
we call invaded lakes “donor” since they are the source of traveling
invader propagules, and the noninvaded lakes we call “recipient.”

The total number of lakes N is assumed to be large enough such that
(i) we can characterize the invasion process by a single variable, the
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proportion of invaded lakes p (the number of invaded lakes NI divided
by the total number of lakes, p = NI/N) and (ii) change of p with time
may be reasonably approximated by a continuous and differentiable
function. In this case it is possible to derive a quadratic growth
model for p(t) that is both biologically reasonable and mathematically
convenient

(1)
dp

dt
= Ap(t)(1 − p(t)).

The derivation follows from the assumption that the transport of
boating and fishing equipment is independent of the invasion process
and this transportation mechanism is also assumed to connect all
lakes under consideration. The mean potential number of invader
propagules that can be transported from a donor lake to a recipient one,
characterizes traffic in the transportation mechanism. In the absence
of any prevention effort, we assume the average number of propagules
that can be transported from any donor lake to any given recipient
lake per unit time (defined as the intensity of propagule transport) be
constant and denoted by A1. For a small period of time Δt the mean
total number of propagules transported from each of the NI invaded
lakes to any other given lake is then K = NIA1Δt. Likewise the total
number introduced into NR lakes is NINRA1Δt. If the probability a
propagule survives following introduction is given by A2, the number of
surviving propagules is NINRA1A2Δt. As NR = N −NI , the increase
in the number of invaded lakes during Δt is

ΔNI = A1A2Δt NI(N − NI).

Dividing through by N and taking into account that ΔNI/N = Δp,
NI = Np and ΔNI = NΔp we come to

Δp = A1A2NΔt p(1 − p).

Assuming p(t) differentiable and Δt small, we can replace this by
differential equation (1) with A = A1A2N . This model of invasion
without prevention can be interpreted as Levins metapopulation model
(Levins [1969]) without extinction or simply as logistic growth equation
(Clark [1990]) in the proportion of invaded lakes over time.
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2.2 Economic and control assumptions. Let the resource manager
believe the benefits of preventing the spread of the invasion be such that
costly investments in prevention are justified. Assume it is possible to
estimate the cost of damage to ecosystems due to the invasion. Let the
cost of damage per unit time be proportional to the total number of
invaded lakes, and let g be the (constant) monetized damage cost per
single lake per unit time. Total damage costs per unit time are then
C1(t) = gNI(t).

The resource manager employs prevention, which adds to the costs
of invasion per unit time. For example, to wash boats it is necessary
to create checkpoints and supply materials, both of which are costly.
While not necessary, for brevity let the disinfection process (prevention)
be general enough such that it may be performed at every lake, donor or
recipient. (In the context of epidemics, this is similar to the treatments
of those infected with a disease and as well as those not infected). Let
prevention efforts at donor lakes be x(t) with (constant) unit cost wx,
and let prevention efforts at recipient lakes be s(t) with a unit cost ws.
The total cost of prevention per unit time is then

(2) C2(t) = wxx(t)NI(t) + wss(t)(N − NI(t)).

Combining damage and prevention costs delivers the total cost per unit
time,

TC(t) = C1(t) + C2(t) = gNI(t) + wxx(t)NI(t) + wss(t)(N − NI(t)).

To mesh the manager’s behavior with the macroscopic biological model
and maintain a focus on important effects in terms of proportion of
lakes invaded, we compute the average cost of invasion per lake per
unit time,

(3) C(t) = gp(t) + wxx(t) p(t) + wss(t)(1 − p(t)).

Average costs are comprised of average cost of damages due to the
invasion (first term), average cost of prevention at donor lakes (second
term), and the average cost of prevention at recipient lakes (third term).

Prevention on a donor lake x(t) reduces the average number of
propagules transported to any recipient lake from A1 to A1a(x(t)),
0 < a = 1. Here a(x(t)) is the probability of a propagule escaping
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treatment, and 1−a(x(t)) can be interpreted as the proportion treated
at donor lakes. Similarly s(t) and b(s(t)), 0 < b ≤ 1 are prevention
effort and probability of escaping treatment at any recipient lake.

To complete the specification of the problem it is necessary to define
an explicit relationship between the proportions treated (1−a(x(t)) and
1 − b(s(t))) and the treatment efforts (x(t) and s(t)). In deriving this
relationship we assume that the effects of two successive treatments are
independent and that treatments with efforts x1 and x2 are equivalent
to a single treatment with the efforts x1+x2. Then, for the probabilities
of two independent events we have a(x1 + x2) = a(x1)a(x2). We
further assume that a small effort x2 = Δx � 1 treats a proportionate
fraction of propagules 1 − a(Δx) ≈ k1Δx, where k1 is the control
efficacy. Upon substitution into the previous rule we have a(x+Δx) =
a(x)a(Δx) ≈ a(x) − k1a(x)Δx or Δa = −k1a(x)Δx as Δx approaches
zero. Similarly Δb = −k2b(s)Δs as Δs approaches zero. This leads to
simple exponential forms that incorporate diminishing effectiveness of
prevention,

(4) a(x(t)) = e−k1x(t), b(s(t)) = e−k2s(t)

where k1 and k2 characterize heterogeneous efficiencies in boat process-
ing. Under these assumptions, the spread of the infection is described
by equation (1) with A = A1A2N replaced by A = A1aA2bN and a
and b as given in equation (4),

(5)
dp

dt
= Ae−k1x(t)−k2s(t) p(t)(1 − p(t))

with the initial proportion of infected lakes p(0) = p0.

3. Optimal control of invasion. To characterize optimal manage-
ment, the problem facing the resource manager is to choose prevention
efforts x(t) = 0 and s(t) = 0 so as to minimize the discounted stream
of costs J during a given time horizon T ,

J [x(t), s(t)] =
∫ T

0

e−rt C(t) dt

where r is the discount rate, e.g. Clark [1990], and C(t) the average cost
of invasion. If x and s are chosen such that the total cost of invasion J
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is minimal, an optimal control task is obtained. Optimal trajectories
for x and s are denoted x∗(t), s∗(t).

Pontryagin’s maximum principle is used to solve the task facing the
manager (Pontryagin et al. [1964]). Optimal rules for x(t) and s(t),
given an initial proportion of lakes invaded, can be found from the
maximum principle as applied to the current value Hamiltonian,

(6)
H = − (

gp(t) + wxx(t) p(t) + wss(t)(1 − p(t))
)

+ μ(t)Ae−k1x(t)−k2s(t) p(t)(1 − p(t)),

where μ(t) is the current value shadow price of the proportion of lakes
invaded. p and μ satisfy differential equations

(7)
dp

dt
= Ae−k1x−k2s p(1 − p) = F (p, x, s), 0 ≤ t ≤ T,

(8)
dμ

dt
= rμ − ∂H

∂p
= μ[r− Ae−k1x−k2s(1−2p)]+ g+ wxx− wss)

= G(p, μ, x, s), p(0) = p0, μ(T ) = 0.

Given the underlying assumption of only piecewise continuous, bounded
controls, this implies that p(t) and μ(t) are continuous and piecewise
continuously differentiable as solutions of ODEs (7) and (8) with piece-
wise continuous right-hand sides.

The necessary condition for optimality of control is maximum value
of H at each moment of time, that is, for optimal x = x∗ and s = s∗

∂H

∂x
= −wxp − k1μ Ae−k1x−k2sp(1 − p) = 0,(9)

or x = 0,
∂H

∂x
< 0,

∂H

∂s
= −wx(1 − p) − k2μ Ae−k1x−k2sp(1 − p) = 0,(10)

or s = 0,
∂H

∂s
< 0

where time notation is suppressed for brevity. The first condition in
each of (9) and (10) corresponds to an “internal maximum” for x and
s, respectively, whereas the second conditions correspond to “boundary
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maximum.” Note that generically the conditions ∂H/∂x = 0 and
∂H/∂s = 0 cannot be satisfied together because then simultaneously

(11) wx = − k1μ Ae−k1x−k2s(1 − p), ws = − k2μ Ae−k1x−k2sp,

or k2pwx = k1(1 − p)ws . This can hold only for single p value

(12) p = pS =
wsk1

wsk1 + wxk2
.

Therefore, not more than one type of control is nonzero. In what follows
it is necessary to know the sign of μ.

Proposition 1. The shadow price μ(t) for t < T is always negative
provided the invasion is costly, i.e., g > 0.

A proof is given in the Appendix.

To determine what p ranges correspond to what type of control,
consider (12) and the necessary conditions. Let p < pS ; then, from the
expressions for ∂H/∂x and ∂H/∂s, it follows that assumption s ≥ 0 and
∂H/∂s = 0 implies ∂H/∂x > 0 and x ≥ 0, which gives a contradiction.
On the other hand, assumption x ≥ 0, ∂H/∂x = 0, implies ∂H/∂s < 0
and s = 0, which is consistent. Similarly we can check the case p > pS .
This allows us to conclude that

a) for p < pS only control at invaded lakes x may be nonzero;

b) for p > pS only control at uninvaded lakes s may be nonzero;

c) the value p = pS corresponds to switching between the two types
of control. The conditions (9) and (10) give only the value of aggregate
control ϕ = k1x + k2s at this point, but not x and s separately.
Therefore, one of x or s can be chosen at our convenience. For example,
we can choose s = 0, then one of the controls is zero for p = pS as well.

Therefore, at any moment only one control variable can be nonzero.
This allows the sufficient conditions for a maximum of H to be checked
as if it were a function of only one variable, that is, just check the signs
of the second derivatives ∂2H/∂x2 and ∂2H/∂s2. This is because the
maximum of H is always reached at the boundary of the admissible
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control set. Thus, the standard procedure for internal maximum of a
2D function, involving the Hessian matrix, is not applicable.

For the sufficient conditions it is straightforward to show that, since
μ < 0,

∂2H

∂x2
= k2

1 μ Ae(−k1x−k2s) p(1 − p) < 0,

∂2H

∂s2
= k2

2 μ Ae(−k1x−k2s) p(1 − p) < 0,

and therefore the conditions ∂H/∂x = 0 or ∂H/∂s = 0 imply that
there is a point of maximum of H with respect to x or s.

In sum, we have the following types of optimal solution:

I. Donor control, x∗ > 0, s∗ = 0, the optimality conditions Hx = 0,
Hs < 0, mean that p < pS and

(13) x∗ =
1
k1

ln
(−k1A μ(1 − p)

wx

)
;

II. Recipient control, x∗ = 0, s∗ > 0, the optimality conditions
Hx < 0, Hs = 0 mean that p > pS and

(14) s∗ =
1
k2

ln
(−k2A μp

ws

)
;

III. No control, x∗ = 0, s∗ = 0, the optimality conditions Hx < 0,
Hs < 0 give k1A(1 − p)μ > −wx and k2Apμ > −ws.

Combining these solutions gives

(15) μ > μSW (p) = max
{
− wx

k1A(1 − p)
,− ws

k2Ap

}
.

The curve μ = μSW (p) corresponds to another switching condition:
from positive control to no control.

As we have expressed x∗, s∗ through p and μ, we can rewrite (7) and
(8) as an autonomous system of ordinary differential equations (ODE)

(16)

dp

dt
= F (p, x∗(p, μ), s∗(p, μ)) = F̃ (p, μ),

dμ

dt
= G(p, μ, x∗(p, μ), s∗(p, μ)) = G̃(p, μ),
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a) c)

b)
d)

FIGURE 1. a) Schematically shown are the three regions on the p, μ plane,
example trajectory μ(p), switching points marked by open circles, and charac-
teristic p values p0, pS , pZ , pe; b), c) three different control patterns for three
different pe or T (short T1 has no control; T2 a period of x-control followed
by no control; long T3 x-control followed by a switch to s-control followed by
a switch to no control); d) schematic relation between T and pe, pe → 1 as
T → ∞. In Section 6 it is proved that pe(T ) and T (pe) are monotonically
increasing functions.

and hence we can apply the technique of phase plane analysis to study
it. The curves μ = μSW (p), 0 < p < 1, and p = pS , μ ≤ μSW (p)
split the phase plane into three domains, according to the three types
of control. When the trajectories of (16) cross these lines, switching of
the control takes place, Figure 1.

This approach allows us to deduce the behavior of the optimal
“aggregate control” ϕ∗(t) = k1x

∗ + k2s
∗ (remembering that only

a single control or none will be nonzero, apart from the switching
moments) which is important for construction of solutions.

Lemma 1. The optimal “aggregate control,” ϕ∗(t) = k1x
∗ + k2s

∗, is
a continuous function of time on [0, T ], and it is piecewise differentiable
on this interval.

A proof is given in the Appendix.
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Corollary 1. The flow of (16) is C1 within each of the regions I, II,
III, and is C0 for p > 0, μ < 0.

Corollary 2. At the point t = t1 of control switching from x > 0
to s > 0 (p = pS) limt→t−1

k1x(t) = limt→t+1
k2s(t). At switching points

where the aggregate control turns to zero, the value of x∗ = 0 or s∗ = 0
must be optimal, that is, one of the relations (11) must hold with ϕ∗ = 0.
This allows us to relate values of p and μ at the switching points as
μ(1 − p) = −wx/(k1A) or μp = −ws/(k2A).

Further simplifications are related with replacing the boundary value
problem for p and μ by an initial problem for μ only. The idea is to use
p as an independent variable. Since 0 < p < 1, dp/dt > 0 in equation
(7), so p(t) is a strictly increasing one-to-one function on [p0, pe], where
the final proportion of lakes invaded is

pe = p(T ).

Therefore p(t) has an inverse t(p). Substituting it into x(t), s(t) and
μ(t), we obtain the following:

Lemma 2. The controls x, s and the shadow price μ can be expressed
as functions of p: x(p), s(p) and μ(p), defined on the interval [p0, pe],
pe = p(T ).

This lemma allows us to solve only one equation instead of two in
(16),

(17)
dμ

dp
=

G̃(p, μ)

F̃ (p, μ)
.

We can solve this numerically, or sometimes analytically, for any pe

such that 0 < p0 < pe < 1. The procedure is quite simple: find the
equation’s solution within each of the phase plane domains. Since in
domains I and II initial conditions are not given, the solution contains
an arbitrary constant. For domain III the initial condition is μ(pe) = 0,
which then provides a solution μIII(p). The process is continued
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until the switching line μ = μSW (p) is intersected at some p = pZ .
Suppose this happens at the boundary between domains III and II,
that is, pZ > pS . Then, since μ is continuous, we have the initial
condition for domain II, μII(pZ) = μSW (pZ), and due to continuity of
the aggregate control, s(pZ) = 0. Hence we have the solution inside
domain II with s(p) and μII(p). Again, continue the process until the
next switching line p = pS , and obtain the initial condition for domain I,
k1x(pS) = k2s(pS) and μI(pS) = μII(pS). Then we can construct the
solution in domain I and continue it down to p = p0. If pe is small
enough, the solution does not enter domain II (p0 < pZ ≤ pS), then
the recipient lake control is never used and solution remains within
domains I and III. Finally, it may appear that pe is so small that
pZ ≤ p0, and then the solution always remains within domain III, and
hence it is optimal for there to be a complete absence of any control.
These situations are illustrated in Figure 1, panels b and c.

However, it is not known which pe corresponds to the given T . In the
Appendix we show that there is one-to-one dependence between T and
pe, and the functions pe(T ) and T (pe) are monotonous and increasing,
as in Figure 1d. Some examples calculated numerically are shown in
Figure 4. This allows us to set up an iterative numerical procedure for
solving a problem with the given time horizon T = T0:

a) Set some pe value,

b) For the given pe, solve (17), and find μ(p);

c) Solve dt/dp = − 1/(F̃ (p, μ(p))), then t(p0) = T (pe).

d) If, within given accuracy T (pe) ≈ T0, then stop, otherwise update
pe and return to step b). This numerical algorithm proved quite simple
and in most cases more efficient than the method of gradient projection
(Rosen [1960]), often used to solve optimal control tasks.

4. Properties of the optimal solution. First, note that in
domains I and II it is more convenient to express μ through x or s and
p, and to obtain the equation for dx/dp or ds/dp, respectively, which
is simpler than (17). The resulting equations for all three domains are
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(see the Appendix for more details),

Domain I :
d

dp

[
k1px +

(
1 +

k1g

wx

)
p

]
=

r

A

ek1x

(1 − p)
.(18)

μ = − wxek1x

k1A(1 − p)
,

(19) Domain II :
d

dp

[
k2(1−p)s

(
k2g

ws
− 1

)
p

]
=

r

A

ek2s

p
,

μ = − ws + ek2s

k2Ap
,

Domain III :
d

dp

[
p(1 − p)μ − g

A
p

]
=

r

A
μ(20)

In the case r = 0 the equations (18) (20) can be solved analytically.
The solution satisfying μ(pe) = 0 for domain III is

μ(p) = − g

A

pe − p

p(1 − p)
, max{p0, pZ} ≤ p ≤ pe, r = 0,

which allows us to obtain the expression for pZ as the intersection point
with μSW (p) (15),

(21) pZ = max
{

k2gpe − ws

k2g − ws
,

k1gpe

k1g + wx

}
.

For domains I and II the analytical solution is obtained as described
above and has the following form (r = 0)

(22) Domain II : k2S(p) =
(

k2g

ws
− 1

)
pZ − p

1 − p
, pS ≤ p < pZ

(only if pS < pZ , p0 < pZ),

(23) Domain I : k1x(p) =
k1g

wx

pe − p

p
− 1, p0 ≤ p < min{pS , pZ}

(only if p0 < pZ , p0 < pS).
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a) c)

b) d)

FIGURE 2. Analytical solutions on the ϕ − p plane, ϕ(p) = k1x(p) + k2s(p).
Note that since one of x and s is always zero, the aggregate control shows
only the behavior of the other nonzero control variable. Part of the trajectory
corresponding to x-control is shown by solid line, the s-control part by dashed
line. The trajectories correspond to 10 pe values between 0.2 and 0.999,
p0 = 0.05.

The trajectory remains within Domain III provided

p0 ≥ max
{

k2g pe − ws

k2g − ws
,

k1g pe

k1g + w − x

}
.

Examples of analytical solutions are shown in Figure 2.

For r > 0 the equations (18) (20) cannot be solved analytically,
and we can only make a number of comparison results. For brevity,
only the main points of the comparison results are discussed, although
complete statements and proofs are in the Appendix. It is natural
to use analytical solution (21) (23) as a reference point for the case
r > 0, with other parameters ideally held constant. However, here we
come to a problem. If the discount rate is changed to a nonzero value,
this typically changes optimal values of controls and hence changes the
terminal p value. Therefore, if we need to compare two solutions with
the same time horizon T , they have different pe and vice versa. Given
these issues, a summary of the comparison results finds:
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• If we consider two solutions with r = 0 and r > 0 and the same p0

and pe, then for the solution with r > 0 controls are less and the time
horizon is shorter (Proposition 2, Corollary 3, 4).

• If we consider two solutions with r = 0 and r > 0 and the same p0

and T , then the solution for r > 0 has greater pe (Corollary 5).

• From the above two statements it is then possible to use the
analytical solutions as upper bound estimates for the control values
(Corollary 6).

• Consequently, if in the non-discounted case it is optimal for there to
be no control, the same is true for any r > 0 and the same pe (Corollary
7).

• There is a one-to-one correspondence between pe, p0 < pe < 1,
and time horizons T . That is, for any such pe there exists T for which
p(T ) = pe. There then exists a function T (pe), which is continuous and
strictly increasing (Proposition 3).

The last result is important for the validity of both analytical and
numerical techniques.

5. Numerical results.

5.1. Parameters dependence. Various parameter combinations and
resulting trajectories are shown in Figure 3. Note that all our equa-
tions and solutions depend only on the following four combinations of
parameters:

k1A

wx
,

k2A

ws
,

g

A
,

r

A
,

and only p0 and pe remain independent. If the parameters are changed
in such a way that these four combinations remain the same, the control
pattern does not change. If the solution curve is known for one case, it
is not necessary to solve all equations again, only to rescale the existing
curve. This property allows an essential reduction in numerical work:
setting, e.g., A = wx = ws = 1, we can vary only ki, g and r (although
this means we may use parameter values which at first glance seem
unreasonable). For example, r = 3 never arise in practice (2000%
annual), but for r/A this may be a reasonable value if, say, r = 0.03
and A = 0.01. The latter value means that the processes develop on a
time scale of 100 years.
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a) c)

b) d)

FIGURE 3. Plots of μ(p) and switching on the p, μ plane. The trajectories
correspond to the values of pe from 0.1 to 0.9. Control turns on/off when
the trajectory crosses the switching curve μSW (p) (15) dashed line. Switching
between x- and s-control occurs when the trajectory crosses the value p = pS .
Circles mark switching points. p0 = 0.05. a) trajectories did not reach the
switching curve, optimal is no control, no switching. b,c) the trajectories have
one or two switching points; d) the trajectory for pe = 0.9 has three switching
points. This is a rare control pattern which arises only for large values of r/A:
there is x-control for small p values, then an interval of no control, then an
interval of s-control, then no control again.

Unfortunately solutions x(t), s(t), μ(t) and the relation between pe

and T cannot be found analytically even for r = 0, except in the case
of zero control. Numerically these dependencies can be obtained easily,
and it appears that some trajectories may correspond to a very long
time horizon. In Figure 4 the relationship between pe and T is shown
for several parameter combinations and scaled to log10 AT (pe). This
figure illustrates the statement of Corollary 6 in the Appendix that
implies the greater r, the smaller T for given pe.

When control is very efficient (large ki) or if there are large losses g,
and the discount rate is 0 or very small, it becomes optimal to maintain
high levels of control. This makes the invasion spread very slowly, and
hence the values of p close to 1 can be reached only after a very long
period of time (T large). Because of this drastic dependence of time
horizon on the final invasion level, we consider influence of parameters
on control policy for fixed pe and for fixed T .
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a) b)

FIGURE 4. The examples of dependency of log10 AT on pe for r/A = 0,
0.01, 0.10, 1. a) Optimal is absence of control, all curves coincide, and can be
obtained analytically; b) the greater is r/A, the smaller is T , and the lower is
the corresponding curve.

a) c)

b) d)

FIGURE 5. Influence of discounting on behavior of trajectories of the phase
plane, compare with Figure 3. a, b) Parameters are those of Figure 3a, but
with added discounting of r = 0.03 and 0.1; c) An example of separation of
x- and s-control at big r/A; d) Same parameters as in Figure 3c, but with
discounting r = 0.03.
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a) c)

b) d)

FIGURE 6. Dependence of control on k1 = k2, g and r. Shown is the function
ϕ(p) = k1x(p) + k2s(p), part of the trajectory corresponding to x-control is
shown by the solid line, the s-control part by the dashed line. The trajectories
correspond to g = 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, the value of g is shown near
each trajectory. If a trajectory for some g value is missing, then the absence
of control is optimal. Initial invasion level is p0 = 0.05.

a) b)

FIGURE 7. Dependence of control pattern in time on k1 = k2 = k and r for
T = 50. Shown is the function ϕ(p) = k1x(p) + k2s(p), part of the trajectory
corresponding to x-control is shown by the solid line, the s-control part by the
dashed line. The trajectories correspond to k = 0.1, 0.5, 1.0, 2.0, 5.0, 10.0,
g = 1. Initial invasion level is p0 = 0.05 (a) and 0.35 (b).
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5.2 Control regimes for fixed pe. The dependence of the analytical
solution on ki and g can be seen from the formulas: the greater are
their values, the more intensive is the control. This remains true in
case r > 0 (Figure 6).

Discounting brings three new qualitative features:

1. x remains a decreasing function of p, but its growth as p → 0
becomes limited (Figure 6), in contrast with the undiscounted case
where x ∼ 1/p (Figure 3).

2. s(p) may be growing for some p interval, in the nondiscounted case
it is always decreasing (Figures 5 and 6).

3. If r/A is big enough (∼ 3), then x- and s-control can be separated
by an interval of no control (Figure 5).

5.3 Control regimes for fixed time horizon T . Returning to the
original problem formulation (from the phase plane analysis) introduces
the parametric influence of T . In this case the influence on the optimal
control pattern from perturbations in other parameters depends on the
given T . Figure 7 shows examples of such controls.

In contrast with the phase plane, it is clear to see that essential
dependence of control on ki is observed only in a relatively small range
of k values (the same is true for g). Outside of this range the control
saturates; either there is practically no control, or there is full control.

Figure 8 illustrates this effect from the dependence of control time TC

(that is the total time when x or s is nonzero) on k = k1 = k2 for various
g values. For the nondiscounted problem this dependence is rather
steep, and the width of the transitional interval is proportional to g.
Although discounting makes this interval wider, it remains proportional
to g. Overall, these numerical results demonstrate that in many
cases the problem of optimal control of invasion can be approximately
reduced to a constant level of intensity.

6. Conclusions. The simple macroscopic model of invasion control
developed herein demonstrates a number of important implications
for resource management. From analytical and numerical viewpoints
optimal prevention policy was shown to be sensitive to several key
factors, including the mean economic damage per lake, the efficiency
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a) c)

b) d)

FIGURE 8. Dependence of control time (when x + s �= 0) on k1 = k2 = k, for
g = 0.2, 0.5, 1.0, 2.0, 5.0., values of r, T and p0 are shown in the panels.

of prevention, the planning horizon, initial magnitude of the invasion,
and the discount rate.

While the analytic results are dependent on the choice of functional
form, we believe they provide substantial insight into the invasion
process at the macroscopic level. Given the choice of functional form,
at each moment it is optimal to implement only one type of prevention
(donor or recipient) or none at all. There may be a moment of control
switching, which depends on the efficiency and per unit cost of each
control.

Through a comprehensive phase-plane analysis on the dynamical
system closed-loop optimal control polices were derived for the limiting
case of a zero discount rate. For the general case a simple and stable
numerical algorithm was presented for the control problem. In the
phase-plane the complexity of usual methods was substantially reduced.
With a single equation in the phase plane, the usual method requiring
the equation governing the dynamics of the stock to be integrated
forward, and that for the shadow price backward, was considerably
simplified. While a full analytical characterization of the system
proved impossible, several comparison propositions were developed and
provide considerable insight into the dynamics of the system.
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There is one more important consequence arising from the models
considered. If managers are confined to only considering the control of
an invader spreading from lake to lake it is possible to only delay the
total invasion, not completely prevent it. There are natural mechanisms
of invasion spread for which there are no controls. Through the
treatment of boats it may be possible to provide extra time for designing
other control measures enabling the existing lake ecosystems either to
destroy invaders or to integrate them without allowing catastrophic
abundance.

Acknowledgments. The authors would like to thank M. Wonham,
M. Neubert, ISIS group members, and anonymous referees for useful
discussions.

Appendix

This appendix contains proofs for results in the main body of the
paper.

Proposition 1. The shadow price μ(t) for t < T is always negative
provided the invasion loses g > 0.

Proof. According to the boundary conditions, μ(T ) = 0, which
implies ∂H/∂x = −wxp < 0 and ∂H/∂s = −ws(1−p) < 0 at t = T . In
this case, the maximum of H is reached at x = s = 0, and at the last
moment zero control is optimal. Therefore dμ/dt(T ) = g > 0, hence
near T for t < T μ(t) < 0. To attain nonnegative values the continuous
function μ(t) must cross the t axis at least once, and at the point of
crossing dμ/dt ≤ 0. At this point μ(tC) = 0. Hence ∂H/∂x < 0
and ∂H/∂s < 0 at t = tC , and therefore x(tC) = s(tC) = 0. This
implies that dμ/dt(tC) = g > 0, which gives a contradiction proving
the proposition.

Lemma 1. The optimal “aggregate control,” ϕ∗(t) = k1x
∗ + k2s

∗, is
a continuous function of time on [0, T ], and it is piecewise differentiable
on this interval.
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Proof. If ϕ(t) > 0, one of the optimality conditions (11) or (8a)
must be satisfied. Let p < pS , then s∗ = 0, and hence (11) is satisfied
for x∗ and s∗, and eϕ∗

= k1 |μ|A(1 − p)/wc. Since both p(t) and
μ(t) are continuous, so is ϕ∗(t). Similarly, in the case ϕ∗(t) > 0 and
p > pS we obtain continuity from (8a). For p = pS continuity follows
from both conditions. In the case ϕ∗(t) = 0 the statement of the
theorem is trivial. It remains to show that the control cannot stop
abruptly, that is, ϕ∗(t) cannot jump from a positive value down to
zero. Consider the continuous function F (t) = k1 |μ(t)|A(1−p(t))/w2.
Our approach is to assume that, for t < tSW ϕ∗(t) > f0 > 0, and for
t > tSW ϕ∗(t) = 0, and then to proceed by showing a contradiction.
Without loss of generality, let (11) be satisfied for t < tSW . Then
F (t) = eϕ∗

> ef0 > 1. For t > tSW optimal s∗ = x∗ = 0, which implies
∂H/∂x < 0 and therefore F (t) < 1. Hence, F (t) has discontinuity
at t = tSW having jumped from e(f0) to a value less than one,
without taking any intermediate values, for example, it has not passed
through e(f0/2). This contradiction implies that ϕ∗(t) must approach
zero continuously in time. Hence it is a continuous function on the
whole interval [0, T ]. The continuity of ϕ∗(t) means that equation (7)
implies p(t) is continuously differentiable everywhere except switching
points, and equation (8) implies μ(t) has the same property. Therefore
ϕ(t) = log(F (t)) is also differentiable everywhere except the switching
points.

Deriving (18), (19), (20).

Domain I, x ≥ 0, s = 0. The relation (11) allows us to express x
through μ and p,

x =
1
k1

ln
(
− k1Aμ(1 − p)

wx

)
, e−k1x = − wx

k1μ A(1 − p)
,

and to rewrite (7), (8) as a closed system of differential equations, which
do not contain unknown controls:

dp

dt
= − wxp

k1μ
,

dμ

dt
= μ r +

wx(1 − 2p)
k1(1 − p)

+ g +
wx

k1
ln

(
− k1Aμ(1 − p)

wx

)
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and

dμ

dp
= − k1μ

wxp

[
μ r +

wx(1 − 2p)
k1(1 − p)

+ g +
wx

k1
ln

(
− k1Aμ(1 − p)

wx

)]
.

However it is complicated for the analysis. It is possible to derive a more
convenient form for the subsequent analysis by expressing μ through x
and p:

μ = − wxek1x

k1A(1 − p)
.

Then after simplifications we come to the system

dp

dt
= Ae−k1x p(1 − p),

k1
dx

dt
= r − Ae−k1x(1 − p)

(
1 +

k1g

wx
+ k1x

)

and the equation for x(p)

k1
dx

dp
=

rek1x

Ap(1 − p)
− 1 + (k1g/wx) + k1x

p
.

After multiplying it by p and combining terms together, we obtain (18).

Domain II, x = 0, s ≥ 0. In a similar fashion we can express μ
through s and p,

μ = − wse
k2s

k2Ap
.

Following the same steps as in domain I, we obtain

k2
ds

dp
=

rek2s

Ap(1 − p)
− (k2g/ws) − 1 − k2s

1 − p
.

After multiplying by 1 − p and combining terms, it can be written in
the form (19).

Domain III, x = 0, s = 0. In this case the control terms vanish, and
we can use (7), (8) directly,

dp

dt
= Ap(1 − p),

dμ

dt
= μ [r − A(1 − 2p)] + g.
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Then (17) takes the form

dμ

dp
= μ

[
r

Ap(1 − p)
− 1 − 2p

p(1 − p)

]
+

g

Ap(1 − p)
.

After multiplying by p(1−p) and combining terms it can be written as
(20).

Comparison results for r > 0.

Proposition 2 (Comparison). Let x(p) be the solution to (18) for
r > 0 on [p1, p2], and let x̃(p) be the solutions for r = 0 such that
x̃(p2) ≥ x(p2). Then x̃(p) ≥ x(p) on [p1, p2]. Similar propositions can
be proved for s(p) and, for μ(p): if s(p), μ(p), s̃(p), μ̃(p) the solutions
to (19) and (20), and s̃(p2) ≥ s(p2), μ̃(p2) ≤ μ(p2), then s̃(p) ≥ s(p),
μ̃(p) ≤ μ(p) on [p1, p2], respectively.

Proof. We can consider only x(p); the other two cases can be proved
similarly. We have

d

dp

[
k1px +

(
1 +

k1g

wx

)
p

]
=

r

A

ek1x

(1−p)
,

d

dp

[
k1px̃ +

(
1 +

k1g

wx

)
p

]
= 0.

Subtracting the second from the first we have

d

dp
[k1p(x − x̃)] =

r

A

ek1x

(1 − p)
> 0.

Since p > 0, k1p(x(p)−x̃(p)) < k1p2(x(p2)−x̃(p2)) ≤ 0, or x̃(p) ≥ x(p).
If x̃(p2) > x(p2), then x̃(p) > x(p).

Corollary 3. Let us denote by x(p), s(p), μ(p) and x̃(p), s̃(p), μ̃(p)
to be the solution to the optimal control problem for the same initial
and final infection levels p0 and pe, and r > 0 and r = 0 respectively.
Then, x̃(p) ≥ x(p), s̃(p) ≥ s(p), μ̃(p) ≤ μ(p), and for values of p where
x̃(p) > 0 or s̃(p) > 0 or μ̃(p) < 0 the corresponding inequality is strict,
that is, x̃(p) > x(p), s̃(p) > s(p) or μ̃(p) < μ(p).

Proof. It is convenient to analyze the situation backwards, from pe

to p0. As μ̃(pe) = μ(pe) = 0, according to Proposition 2, for p < pe
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μ̃(p) < μ(p) where they satisfy (20), i.e., before they intersect the
switching curve μSW (p) (15). Since μ̃(p) < μ(p), μ̃(p) intersects the
switching curve first. This implies for the switching points p̃Z > pZ .
On the interval [pZ , p̃Z ] μ̃p < μ(p) because they are separated by the
switching curve. For simplicity, assume that pZ > pS , then s(pZ) = 0
while s̃(pZ) > 0. If Proposition 2 is applied again on the interval
[pS , pZ ], then s̃(p) > s(p). Manipulating the optimality condition so
that μ = −(ws/k2Ap)ek2s, then μ̃(p) < μ(p). Finally for p = pS

x̃(pS) > x(pS), and hence x̃(p) > x(p) p < pS . Applying μ =
−(wx/k1A(1 − p))ek1x allows μ̃(p) < μ(p) to be obtained. Situations
p̃Z > pS > pZ and pS > p̃Z > pZ can be analyzed similarly.

Corollary 4. Let the conditions of Corollary 3 be satisfied. Then
time horizon for the discounted problem is shorter than that for the
non-discounted problem, T < T̃ .

Proof. We can write

(24) T = T (pe) =
∫ pe

p0

1
(dp/dt)

dp =
∫ pe

p0

ek1x(p)+k2s(p)

Ap(1 − p)
dp.

Since x̃(p) > x(p) for p0 ≤ p < min(pS , pZ), and the integrand is always
positive, we obtain the statement of the corollary.

Corollary 5. If discounted and non-discounted problems have the
same time horizon T and the initial infection level p0, the discounted
problem has greater final level of infection, pe > p̃e.

Proof. For the non-discounted problem x(p), s(p) and pZ are increas-
ing functions of pe, and hence T̃ is an increasing function of pe as well.
To make time horizons in both problems equal, it is necessary to de-
crease T̃ and consequently decrease the final level of infection. This
proves the statement.

For very long time horizons T the final level of infection is very close
to 1, so it is reasonable to consider what happens in the limit pe → 1.
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Then for the case of r = 0 analytical solutions, give

pZ → 1, k2s(p) −→
(

k2g

ws
− 1

)
, k1x(p) −→ k1g

wx

1 − p

p
− 1.

Since both x and s increase with pe, it is possible to obtain bounds for
controls:

Corollary 6. The values of the control variables under optimal
control for any r satisfy

0 ≤ k1x(p) ≤ k1g

wx

1 − p

p
− 1, 0 ≤ k2s(p) ≤

(
k2g

ws
− 1

)
.

It follows that the recipient lakes control is used only in the case
k2g ≥ ws. From (19), when p = pZ , s turns to zero and cannot be
growing, so ds/dp ≤ 0. This means that the necessary condition for the
recipient lakes control is

r

ApZ
− k2g

ws
+ 1 ≤ 0 or k2g ≥ ws

(
1 +

r

ApZ

)
> ws

(
1 +

r

A

)
.

Corollary 7 (Sufficient condition for optimality of no con-
trol). If in case r = 0 (no discounting) it is optimal for a complete
absence of control, then for r > 0 and the same final level of infection
pe it is also optimal for there to be an absence of control.

Proof. Consider the backward motion along the trajectory from pe

to p0 for both problems. Control then turns on when the trajectory
crosses the switching curve. According to Corollary 5, μ̃(p) < μ(p) for
p < pe, therefore μ̃(p) must cross the switching curve first. If it has
not crossed it until p0 (when no control is optimal), the same is true
for μ(p) as well. This means that for r > 0 the absence of control is
optimal.

Proposition 3. For every 0 < p0 < 1 and finite positive T0 there
exists pe > p0, such that T (pe) = T0.
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Proof. For any p0 < pe < 1 there exist unique bounded solutions
of the optimal control problem for μ(p), x(p), s(p), and therefore it
is possible to define function T (pe) (24). As the solution of the ODE
continuously depends on initial data, this function is continuous and
monotonically increases everywhere that it exists. The latter follows
from topological considerations. Consider two solutions μ1(p) and
μ2(p), pe1 < pe2. Since they are trajectories on the plane, they cannot
cross, and hence μ1(p) > μ2(p) for p0 < p < pe1. From the optimality
conditions, it follows that for the same p values x1 ≤ x2, s1 ≤ s2, and
according to (24), T1 = T (pe1) < T2 = T (pe2).

To demonstrate that the domain of T (pe) is p0 ≤ pe < 1 and its range
is T > 0, explicit bounds are determined from below and from above.
From Corollary 6 it follows that

0≤ k1x+k2s ≤ max
{

k1g

wx

1−p

p
−1,

k2g

ws
−1

}
< max

{
k1g

wxpS
,
k2g

ws

}
≡ C.

Consider two equations

du

dt
= Au(1 − u),

dv

dt
= Ae−Cv(1 − v), u(0) = v(0) = p0.

Comparing with (7), we obtain that

u ≥ p > v,
du

dt
(p) ≥ dp

dt
(p) >

dv

dt
(p), p0 < p < 1;

therefore, from (24),

∫ pe

p0

1
Au(1 − u)

du ≤ T (pe) <

∫ pe

p0

eC

Au(1 − u)
du

or
1
A

ln
(

pe(1 − p0)
p0(1 − pe)

)
≤ T (pe) <

eC

A
ln

(
pe(1 − p0)
p0(1 − pe)

)
.

Therefore the domain of T (pe) is p0 ≤ pe < 1, and it takes any positive
values as pe → 1. Then it has an inverse on [0,∞), and hence for
any finite T0 > 0 there exists a corresponding p0 < pe0 < 1, such
that T (pe0) = T0, and there exists the corresponding optimal control
solution.
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